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Abstract

Many of the complex physical processes relevant for compositional multi-phase flow in porous media are well under-
stood at the pore-scale level. In order to study CO2 storage in sub-surface formations, however, it is not feasible to perform
simulations at these small scales directly and effective models for multi-phase flow description at Darcy scale are needed.
Unfortunately, in many cases it is not clear how the micro-scale knowledge can rigorously be translated into consistent
macroscopic equations. Here, we present a new methodology, which provides a link between Lagrangian statistics of phase
particle evolution and Darcy scale dynamics. Unlike in finite-volume methods, the evolution of Lagrangian particles rep-
resenting small fluid phase volumes is modeled. Each particle has a state vector consisting of its position, velocity, fluid
phase information and possibly other properties like phase composition. While the particles are transported through
the computational domain according to their individual velocities, the properties are modeled via stochastic processes hon-
oring specified Lagrangian statistics. Note that the conditional expectations of the particle velocities are different for dif-
ferent fluid phases. The goal of this paper is to present the general framework for this alternative modeling approach.
Various one and two-dimensional numerical experiments demonstrate that with appropriate stochastic rules the particle
solutions are consistent with a standard two-phase Darcy flow formulation. In the end, we demonstrate how to model
non-equilibrium phenomena within the stochastic particle framework, which will be the main focus of the future work.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Flow and transport processes in natural porous media are usually described using differential equations
defined on the macroscopic (Darcy) scale. For slow single-phase flow in a homogeneous porous medium,
Darcy’s law is an expression of momentum conservation at the macroscopic scale. When multiple immiscible
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fluid phases are present (e.g., oil, super-critical CO2 and water), the permeability in Darcy’s original equation
is replaced by an effective value to accommodate the presence of other phases in the porous medium [1]. This
effective parameter is expressed as a function of phase saturation and is called relative permeability. Macro-
scopic capillary effects are introduced by considering different pressures in the different fluid phases. The cap-
illary pressure relations are also usually expressed as functions of saturation.

In addition to saturation, the relative permeability and capillary pressure relations depend on the pore-scale
geometry, network topology, wettability characteristics, viscosity ratio of the fluids, and saturation history.
The physical interactions that take place in the rock-fluids system at the pore (microscopic) scale dictate
the behavior observed at the macroscopic scale. The complexity of the small-scale dynamics has precluded
the development of a general approach that links the pore-scale physics and the representation at the Darcy
scale [2]. Thus, in practice the relative permeability and capillary relations, which are assumed to be appropri-
ate macroscopic-scale descriptions, are obtained by performing laboratory flow experiments using specimens
(cores) of the porous medium of interest.

This simple Darcy scale representation of the relative permeability and capillary relations is thought to be
applicable for two-phase flow under strongly wetting conditions when the viscosity ratio is close to unity, and
the macroscopic flow is within a relatively small range of capillary numbers [3]. In other cases of practical
interest, such as EOR (enhanced oil recovery) gas injection processes and the injection and post injection peri-
ods associated with CO2 sequestration in aquifers and reservoirs, the application of this simple model is
questionable.

The mean flow velocity of reservoir displacement processes is quite small (a few centimeters per day) and
the characteristic pore size of the medium is also very small. So the Reynolds number is much less than unity,
and the flow at the pore scale is expected to usually be in the Stokes regime, in which the inertial effects are
negligible and the pressure drop takes place entirely due to viscous and capillary forces. In these cases, the
problem at the pore level is well defined and can be solved, if the pore scale geometry is known. However,
even a small sample of a real porous medium contains millions of pores and in most cases it is very difficult
to obtain the complete description of the pore scale geometry [4].

While the small scale flow dynamics are interesting, the objective is to construct a model based on rela-
tions that represent the macroscopic (Darcy scale and larger) behaviors accurately. The model must account
for the dynamic effects of the pore scale physics on the large-scale flow. In the standard approach, the
assumption is that the pore scale physics is accounted for in the relative permeability and capillary relations,
which are obtained from experiments. However, this standard treatment is not well suited, if the flow
involves complex processes such as non-equilibrium phenomena and residual trapping. In such flows, a sta-
tistical approach is more appropriate, since a small elemental volume of the porous media contains a large
number of pores. Here we develop a statistical method for multi-phase transport in porous media using sto-
chastic particles.

Particle tracking methods have been employed successfully in subsurface flow simulations. From the pio-
neering works of [5,6], fully Lagrangian schemes based on random walk approach have been widely employed
for tracer (i.e. unit-viscosity, miscible, single-phase) transport. Extension of the particle-tracking approach to
more complex geometry [7] and reactive flows in highly heterogeneous formations [8] appeared later. A hybrid
Eulerian–Lagrangian method, where particle tracking is employed to represent the transport, was developed
and used to model unstable first-contact miscible (two-component, single-phase flow) displacements in the
presence of density and viscosity differences [9]. In these particle tracking methods, each particle represents
a physical mass. The concentration of the tracked species (e.g. tracer) is obtained by averaging over the control
volume. Relatively large particle numbers and fine grids are necessary to obtain reasonably accurate concen-
tration distributions in the domain.

Several Eulerian–Lagrangian schemes have been introduced for linear tracer transport (see, e.g. [10–14])
and extended to nonlinear problems such as solving the saturation equation for two-phase immiscible flow
(see, e.g., [15–17]). Fully Lagrangian methods have also been applied to reactive-tracer transport with nonlin-
ear accumulation term (see, e.g., [18,19]; or [20] for a comprehensive review), which requires the calculation of
concentration at the node of a superimposed grid [21]. Unlike particle tracking schemes, here concentrations
are propagated along path lines. Streamline-based methods, which belong to this family, have been developed
for modeling multi-component multi-phase displacement processes in heterogeneous domains [22]. Character-
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istic based methods have been employed for nonlinear immiscible two-phase flow where particles are moved
with the characteristic velocities and saturation is a particle property [23,24].

We developed a stochastic particle based model for nonlinear immiscible multi-phase flow, where the
phase flux is a nonlinear function of saturation (e.g., as for the Buckley–Leverett problem). In our
approach, a particle belongs to a specific fluid phase (e.g., water and oil particles) and moves with the phase
particle velocity. The saturation is a statistical quantity defined for an ensemble of the particles. Thus, our
method is different from the characteristic based methods, where particles move with the characteristic
velocity and saturation is associated with the particles. In the stochastic particle method (SPM) framework,
we essentially construct a model for the large scale dynamics based on stochastic rules for the phase particle
behavior at the pore scale.

A similar approach was proposed in a previous, unpublished attempt [25]. It was found that, it is impossible
to solve nonlinear hyperbolic problems with shocks numerically using stochastic particles. Solving a nonlinear
hyperbolic problem using stochastic particles requires the estimation of ensemble averaged quantities (e.g. sat-
uration) which implies averaging over finite volumes. For numerical reasons this does not work for discontin-
uous solutions and therefore, a minimum amount of diffusion (depending upon the size of averaging volume)
must be introduced. Note that the size of the averaging volume determines the resolution. In the limit of infi-
nitely many particles, the size of the averaging volume can be chosen infinitely small, which allows to solve
purely hyperbolic problems. Note, however, that most macroscopic physical scenarios of interest depict dif-
fusive effects; e.g. due to capillary pressure differences or pore scale dispersion.

Note that it is not intended to employ SPM to solve problems, which can already be computed with con-
tinuum methods. The motivation is a framework, which offers an alternative modeling approach, i.e. from a
Lagrangian viewpoint. Such a Lagrangian framework is a natural way to represent non-equilibrium phenom-
ena by specifying the physical rules governing the particle evolution at the micro-scale. Moreover, a consistent
probability density function (PDF) transport equation can be formulated, which allows to derive correspond-
ing Eulerian moment equations [26].

We demonstrate that in the limiting case of zero correlation time and length scales, the macroscopic equa-
tions derived from the microscopic model reduce to the standard Darcy scale (macroscopic) equations. In
more general cases, however, additional terms and closure models are required (which requires no modeling
in the stochastic particle method), if an Eulerian approach is used. There are no inherent limitations in the
methodology, provided the required Lagrangian statistics can be specified, e.g. from experiments or pore net-
work simulations. Such a consistent multi-scale multi-physics framework allows for more insight into the
physics governing multi-phase flow in natural porous media; moreover, this framework can help in deriving
effective coefficients and proposing modified macroscopic models.
2. Basic ideas

In this section, we explain the basic ideas of the stochastic particle method (SPM). Therefore, the nonlinear
transport problem
oqi

ot
þr � F i ¼ qi for i 2 f1; . . . ; ng on X ð1Þ
with some boundary conditions at oX is considered, where qi, F i and qi are the density of a conserved scalar,
flux vector and rate of production, respectively. Now, we consider a large number of computational particles,
each associated with one of the n scalars. Here, the density qi ¼ wiq

pn
i represents the concentration of i-parti-

cles, where wi is the particle weight and qpn
i the particle number density. Next, it is shown how to evolve the

particles in order to compute the solution of Eq. (1). By integrating Eq. (1) over a control volume X0 � X one
obtains
Z

X0

oqi

ot
dXþ

Z
X0
r � F i dX ¼

Z
X0

qi dX for i 2 f1; . . . ; ng: ð2Þ
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Using Gauss’ theorem and with the relation qi ¼ wiq
pn
i one obtains the equivalent expression
o

ot

Z
X0

qpn
i dX|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nX0
i

¼ �
Z

oX0

F i

wi
� m dC|fflfflfflffl{zfflfflfflffl}
dF i

þ
Z

X0

qi

wi
dX for i 2 f1; . . . ; ng; ð3Þ
where m is the unit normal vector at oX0 pointing outwards. The first term in Eq. (3) is the rate at which the
number nX0

i of i-particles in X0 changes. The first right-hand side term describes the contribution due to particle
fluxes across the boundary oX0, which has to balance the left-hand side term and the last term on the right-
hand side (rate at which particles are created inside X0). Now, we show that the evolution of the particle con-
centration qi is consistent with Eq. (1), if the i-particles are transported with the velocity
u�i ¼
F i

qi
¼ F i

wiq
pn
i
: ð4Þ
The superscript � denotes that a quantity is a particle property. While u�i is the velocity of an individual par-
ticle, qpn

i is the particle number density in its neighborhood. Note that we assume to know both F i and qi at the
particle locations. The rate of particles flowing across a surface element dC is
qpn
i u�i � m dC ¼ qpn

i
F i

qi
� m dC ¼ F i

wi
� m dC; ð5Þ
which is identical to dF i in Eq. (3). Thus, we have shown that Eq. (2) is solved consistently, if the particles are
evolved according to Eq. (4). Moreover, since this is true for any arbitrary volume X0 � X, the particle solu-
tion converges to the exact solution of Eq. (1) for jX0j ! 0 and an infinite number of particles.

3. Model for multi-phase flow in porous media

In this section, it is shown how the SPM introduced in the previous section can be employed to solve for
multi-phase transport in porous media. We consider n phases, each represented by a number of computational
particles. All particles of phase i have the same mathematical weight wi ¼ V i, where V i is the volume occupied
by a particle. One could also choose wi being proportional to the mass associated to a particle and the volume
being a function of pressure and weight. For incompressible fluid it is easier, however, to directly take the par-
ticle weight to be equal to the volume. In an arbitrary volume X0 � X, the number of phase i particles is equal to
nX0

i ¼
Z

X0
qpn

i dX ¼
Z

X0

qi

V i
dX; ð6Þ
where
R

X0 qi dX is the volume represented by these particles. The accessible pore space inside X0 is
R

X0 /dX,
where the porosity is defined as / ¼

Pn
j¼1qj. The phase saturations
Si ¼
qi

/
¼ V iq

pn
i

/
ð7Þ
are proportional to the particle number density. Assuming that the fluids and the rock are incompressible
(V i ¼ constant and / ¼ /ðxÞ) we can write the saturation equations as
/
oSi

ot
þ $ � F i ¼ qi; i 2 f1; . . . ; ng; ð8Þ
which is consistent with Eq. (1). In accordance with Eq. (4), each particle moves with velocity
u�i ¼
F i

/Si
: ð9Þ
It should be noted that at this point the source terms qi represent only well rates and are explicitly specified.
These source terms can easily be treated in the SPM framework. Each particle represents either mass or vol-
ume of the fluid phase to which it belongs. Therefore, to be consistent with the source term at some location in
the domain, particles might be removed or additional particles are introduced; according to the local mass
flow rate. Summing Eq. (8) over all phases and using the fact that

Pn
j¼1Sj � 1 we obtain
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$ �
Xn

j¼1
F j

zfflfflfflfflffl}|fflfflfflfflffl{F

¼
Xn

j¼1
qj

zfflfflfflffl}|fflfflfflffl{q

: ð10Þ
In the absence of sources and sinks, the total flux F is divergence free.
So far, we have derived a discrete representation that is consistent with the continuum Eq. (8), where phase

particles move with the velocity given by Eq. (9). Here, for illustration purpose, it is assumed that the large
scale (Darcy scale) fluxes F i are governed by Darcy’s law and read
F i ¼ �
kri k
li

$pi; i 2 f1; . . . ; ng; ð11Þ
where k is the rock permeability and kri , li and pi are the relative permeability, viscosity and pressure of phase
i, respectively. Usually, empirical expressions are used to relate kri and pci�1

¼ pi�1 � pi with the phase satura-
tions. Substituting the fluxes (11) into Eq. (10) leads to the following elliptic equation
$ � �
Xn

j¼1

krj k

lj
$pj

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{F

¼ q: ð12Þ
In Appendix, we show how Eq. (11) can be rewritten in the following fractional flow formulation
F i ¼
ki

k
F þ
�ðkikÞ

Pn
l¼1ðkl

Pl�1
j¼1$pcjÞ þ kikk

Pi�1
j¼1$pcj

k
; i 2 f1; . . . ; ng; ð13Þ
where ki ¼ kri=li are the phase mobilities and k ¼
Pn

j¼1kj the total mobility. In the general case, ki are func-
tions of saturations, and therefore, the elliptic pressure equation (see Appendix for the derivation)
�$ � ðkk$p1Þ þ $ � k
Xn

l¼1
kl

Xl�1

j¼1
$pcj

� �� �
¼ q ð14Þ
is coupled with the phase transport equations (8). One possible way to solve the system of equations is to com-
pute the pressure field at the beginning of each time step by solving Eq. (14) and subsequent solution of the
transport equations
/
oSi

ot
þ $ � F i ¼ qi; i 2 f1; . . . ; ng: ð15Þ
In general, the phase fluxes F i are functions of saturations and their gradients. Therefore, in order to compute
the velocity (9) of a particle, the saturations, i.e. the phase particle number densities qpn

i , have to be estimated
in its neighborhood. For smooth saturation distributions this can be achieved by averaging over an ensemble
around the particle location x and since for an infinite number of particles the volume containing that ensem-
ble can be chosen infinitely small, this local spatial averaging procedure becomes identical with ensemble aver-
aging at the location x. If one insists in computing very sharp saturation fronts, then the averaging volume has
to be extremely small and a huge number of particles have to employed. However, in a numerical simulation
with a finite size averaging volume, one has to ensure that the particle distribution is nearly uniform over the
averaging volume such that ergodicity can be assumed, which allows to replace ensemble by spatial averaging.
Below we discuss two ways how this can be achieved.
3.1. Random walk method

In real porous media flows there are various pore scale phenomena that result in dispersive effects at the
continuum scales, e.g. due to capillary pressure differences, molecular diffusion and mechanical dispersion.
Therefore, there exist no infinitely sharp fronts at the macroscale. Mechanical dispersion can be treated ade-
quately by adding a diffusion term to Eq. (8), which leads to the modified saturation equation
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/
oSi

ot
þ $ � F i ¼ $ � D$Si þ qi; i 2 f1; . . . ; ng: ð16Þ
Note that in general D is not constant in space and depends on jF ij and on the saturation. To compute a
numerical solution in the presence of these dispersive phenomena we only need to resolve the smallest length
scale l that captures the corresponding effects at the continuum scales. In practice, therefore, the characteristic
size of the averaging volume must be in the neighborhood of l. A particle evolution in physical space, which is
consistent with Eq. (16), is given by
dx�i ¼ u�i dt ¼ F i

/Si
dt þ

ffiffiffiffiffiffiffi
2D
/

s
dW þ 1

/
$Ddt; ð17Þ
where F i is given by Eq. (13). Note that F i also include diffusive fluxes due to capillary pressure differences.
The second right-hand side term of Eq. (17) is a Wiener process, where each component of
dW ¼ ðdW 1; dW 2; dW 3ÞT has a Gaussian distribution with hdW ki � 0 and hdW k dW li ¼ dkl dt. The last term
is necessary to account for spatially varying coefficient D. One should remember that Eq. (17) does not ac-
count for the source term in Eq. (16). As mentioned before, in order to account for the source term, particles
have to be introduced or destroyed at consistent rates. In our simulations, this is necessary in grid cells, which
are perforated by a well.

3.2. Shaking method

If one is not interested in resolving the length scales associated with physical diffusion, an alternative
approach can be used. First particles are moved with the velocity given by Eq. (9). After each time step
one assigns arbitrary new particle positions within the same cell. Computationally, this can be done by uni-
formly redistributing (‘‘shaking”) the particles in a cell after each time step. With a uniform distribution of
particles in a cell, local ergodicity can be assumed, i.e. the particles in a cell represent the distribution at
one point in space and time. Important is that thereby the other particle properties are not affected, such that
the particle properties of the ensemble still exhibit the same distribution. Note, however, that the resulting dif-
fusion is dictated by the grid and cannot directly be controlled.
4. Solution algorithm

We solve the flow equation (14) for pressure using a finite-volume method (FVM). The macroscopic trans-
port Eq. (16), on the other hand, is solved with the SPM, which is fully Lagrangian method, where the particle
evolution is given by Eq. (17). To solve the transport equation, the whole domain is populated with various
phase particles (consistent with the initial condition). The following quantities are needed to evolve the par-
ticles: F, Si, $pc and $D. Since these quantities are only available at the grid level, they have to be interpolated
to the particle locations. In order to ensure mass balance, linear interpolation of F from the cell faces to the
particle locations is used. To estimate Si, simple cell averaging is employed at this point. The evolution of an
individual particle is computed with a second or fourth order Runge–Kutta scheme. For example, in the sec-
ond order scheme a particle is first transported according to
x�
nþ1=2 ¼ x�

n þ F i

/Si
þ 1

/
$D

� �
dt
2
: ð18Þ
All terms in the brackets are evaluated at location x�
n
. Finally, the new particle position is obtained through
x�
nþ1 ¼ x�

n þ F i

/Si
þ 1

/
$D

� �
dt þ

ffiffiffiffiffiffiffiffiffiffiffi
2Ddt

/

s
n; ð19Þ
where the total flux F is evaluated at x�
nþ1=2

and all other quantities at x�
n
. Note that the components of the

vector n ¼ ðn1; n2; n3ÞT are independent random variables with standard Gaussian distribution. It should be
mentioned that in the above scheme, higher order accuracy is obtained only if Si and D in Eq. (19) are
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evaluated at the mid point x�
nþ1=2

. A more detailed discussion on higher order integration of stochastic differ-
ential equations can be found in [27]. Initially, the particles are distributed according to the specified satura-
tion distribution. At the beginning of each time step, F is computed by the FVM and subsequently the
particles are transported as described above. In order to deal with in- and out-flow boundary conditions,
the computational domain is surrounded with a layer of ghost cells, which can be re-populated consistently
with the specified boundary conditions at the beginning of each time step [28]. Re-population is also applied
in cells where a source is employed (wells). No-flow boundaries are treated by simply reflecting the particles at
the corresponding walls.
5. Numerical validation

In this section we demonstrate that the SPM is consistent with the governing equations. In order to show
convergence, the SPM results are compared with corresponding FVM reference solutions (using up to ten
times finer grids to avoid numerical dispersion). For all the results presented here two phases (n ¼ 2) with
the flux functions
F1 ¼
k1

k
F � kk1k2

k
$pc and F2 ¼

k2

k
F þ kk1k2

k
$pc ð20Þ
are considered, where
pc ¼ p1 � p2 ð21Þ
is the capillary pressure difference between the two phases. We take the quadratic relative permeabilities func-
tions as
k1 ¼
S2

l1

and k2 ¼
ð1� SÞ2

Ml1

; ð22Þ
where M ¼ l2=l1 is the viscosity ratio. The saturations of phase one and phase two are S1 ¼ S and S2 ¼ 1� S,
respectively. To treat stochastic component of diffusion we employ random walk method. Note that all quan-
tities are presented in dimensionless form.
5.1. 1D validation

For initial validation purpose, a simple 1D problem is considered. In the following results, the dimen-
sionless space and time coordinates x0 ¼ x=L and t0 ¼ Ft=ð/LÞ are used. At time t0 ¼ 0, the saturation
S1 ¼ S is one in the whole reservoir. Then, for t0 > 0, phase two is injected at the left boundary
(S2 ¼ 1� S ¼ 1 at x0 ¼ 0). The total volume flux F is constant during the whole simulation. For the first
studies, no capillary pressure effect is considered, i.e. pc ¼ 0, and the diffusion coefficient D is chosen such
that the grid Peclet number
Pe ¼ F Dx
D

ð23Þ
is one, where Dx is the grid spacing used for the SPM. Note that the SPM requires a grid Peclet number, which
is not much larger than one. Figs. 1 (a) and (b) show the saturation profiles of phase two for M ¼ 1 after the
time t0 ¼ 0:25 obtained with the grid spacings Dx0 ¼ 0:01 and 0.002, respectively and Pe ¼ 1. The good agree-
ment between the SPM (solid lines) and FVM (dotted lines) solutions demonstrates that the two methods are
consistent. Note that the grid spacing used for the FVM is Dx0=10 in order to provide a good reference. In
order to keep the statistical error of the SPM results very small, a huge number of particles, i.e. on average
50,000 per grid cell, were employed. Note, however, that the SPM also works with much fewer particles.
Fig. 2 shows SPM and FVM results for various viscosity ratios M and a grid spacing Dx0 ¼ 0:01 (0.001 for
the FVM).
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Fig. 1. Simulation results of the 1D test case for M ¼ 1: (a) Dx0 ¼ 0:01; (b) Dx0 ¼ 0:002.

Fig. 2. Simulation results of the 1D test case for different values of M ¼ 4; 2; 0:5; 0:25; 0:1 and Dx0 ¼ 0:01.

M. Tyagi et al. / Journal of Computational Physics 227 (2008) 6696–6714 6703
Next, we consider the same 1D problem with capillary pressure, i.e. with
pc ¼
�p0=S for drainage

p0=ð1� SÞ for imbibition:

�
ð24Þ
Substituting Eqs. (22) and (24) into Eq. (20) leads to the flux functions
F1 ¼
MS2

MS2 þ ð1� SÞ2
F � C$S and ð25Þ

F2 ¼
ð1� SÞ2

MS2 þ ð1� SÞ2
F þ C$S ð26Þ
with
C ¼
C0

ð1�SÞ2

MS2þð1�SÞ2 for drainage

C0
S2

MS2þð1�SÞ2 for imbibition

8<: ð27Þ
and C0 ¼ p0k=l1. The corresponding dimensionless numbers are C0 ¼ C=ðFLÞ and C00 ¼ p0k=ðl1FLÞ. Note that
the presence of capillary pressure leads to a saturation dependent diffusion coefficient C. Therefore, the SPM
can be employed for Pe� 1, if the capillarity effects are significant. It has to be mentioned, however, that a
minimum amount of randomness is required, i.e. D must not be zero. Due to technical reasons, during the
initial period from t0 ¼ 0 to t0 ¼ 0:05 Pe and C were set to 1 and 0, respectively. For t0 > 0:05, Pe was increased
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by a factor of 10 and C was finite. Figs. 3 (a) and (b) show the saturation profiles at t0 ¼ 0:25 for C0 ¼ 0:01 and
C0 ¼ 0:02, respectively. In all cases, the grid spacings for the SPM and the FVM are 0.01 and 0.001, respec-
tively. It can be seen that the SPM (solid lines) and FVM (dotted lines) results are in excellent agreement. Figs.
4 (a) and (b) depict the corresponding results for imbibition.

5.2. 2D validation

The 1D validation studies show that the SPM is consistent with the FVM and that the results converge to
the correct solutions. Here, it is demonstrated that the method can also be applied for multi-dimensional prob-
lems. We consider a quadratic 2D domain (quarter-five-spot configuration) X of size L� L with impermeable
walls (Fig. 5). A source and a sink are distributed over square sub-domains as
q ¼

100
L2 q0; if ð0 6 x=L 6 0:1Þ ^ ð0 6 y=L 6 0:1Þ
� 100

L2 q0; if ð0:9 6 x=L 6 1Þ ^ ð0:9 6 y=L 6 1Þ
0; else;

8><>: ð28Þ
where phase two is injected at the lower left corner (the viscosity ratio M is one in all cases). Initial conditions
at t ¼ 0 are
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Fig. 3. Simulation results with M ¼ 1 and a constant diffusion coefficient: (a) C0 ¼ 0:01; (b) C0 ¼ 0:02.
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Fig. 4. Simulation results with M ¼ 1 for imbibition: (a) C00 ¼ 0:01; (b) C00 ¼ 0:02.
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S2 ¼
1; if ð0 6 x=L 6 0:11Þ ^ ð0 6 y=L 6 0:11Þ
0; else:

�
ð29Þ
The domain is discretized by an orthogonal grid into 100� 100 cells of equal size and for all the following
results the dimensionless space and time coordinates x0 ¼ x=L and t0 ¼ q0t=ð/L2Þ are used. With the following
studies we want to demonstrate that the SPM for transport gives consistent results. Although it is possible to
update the flow field every time step, here the focus is on the transport part and the flow was computed only at
the beginning of the simulations. For all the following studies an average number of 16,000 particles per cell
and a fourth order particle tracking scheme were employed. Moreover, for validation purpose the SPM results
are compared with the corresponding FVM solutions, for which a QUICK scheme [29] was used.

5.2.1. Homogeneous case

First, in order to demonstrate that the SPM can be applied for non-uniform multi-dimensional simulations, a
homogeneous permeability field is considered. No capillary pressure effects are taken into account (C ¼ 0) and
dispersion is purely mechanical with D ¼ 0:01LjFj. This corresponds to a grid Peclet number of one everywhere
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Fig. 7. Particle distributions in homogeneous permeability field and M ¼ 1: (a) phase-2; (b) phase-1.
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in the domain. The time step, Dt0, was equal to 0.001 corresponding to a maximum CFL number of approxi-
mately 0.5. Fig. 6 (a) depicts contours and Fig. 6 (b) profiles (along the diagonal from injector to producer)
of S2 at t0 ¼ 0:25. Shown are both, SPM and FVM results and as can be observed they are in excellent agreement.
In addition, scatter plots of the phase two and phase one particles are shown in Fig. 7 (a) and (b), respectively. It
should be noted that the sparsely distributed particles in Fig. 7 (b) represent the expansion wave and are not due
to diffusive effects.

5.2.2. Heterogeneous case

Here, a more realistic case with the heterogeneous permeability field depicted in Fig. 8 (log k) is considered.
As in the previous study, dispersion is solely due to mechanical dispersion, i.e. C ¼ 0 and D ¼ 0:01LjFj. Since
the velocity variation is larger this time, Dt0 was 0.0001 to ensure a CFL number smaller than one everywhere.
Again, excellent agreement between SPM and FVM results can be observed in Fig. 9, where the contours of S2

are shown. The phase particle distributions are depicted in Fig. 10 (a) and (b).

5.2.3. Homogeneous case with capillary pressure effects

Finally, convergence is demonstrated for a 2D case with capillary pressure effects using the values 0.01 and
0:001LjFj for C0ð¼ C=q0Þ and D, respectively. Without loss of generality a homogeneous permeability field was
Fig. 10. Particle distribution in heterogeneous permeability field for M ¼ 1: (a) phase-2; (b) phase-1.
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Fig. 11. Simulation results for quarter-five spot case with homogeneous permeability field, capillary pressure (C0 ¼ 0:01) and M ¼ 1: (a)
contours of injected phase saturation; (b) variation of injected phase saturation along the diagonal.
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used for this study. Fig. 11 (a) depicts contours and Fig. 11 b diagonal profiles of S2. As in the previous 2D test
cases, the agreement between the SPM and FVM solutions is excellent.
6. Probability density function (PDF) modeling of non-equilibrium multi-phase systems

In this section, we demonstrate how the SPM framework can be used to derive macroscopic behavior from
simple statistical rules describing the evolution of particle properties. Note that the aim is not to propose a new
physical model; the scenario described next is of illustrative nature only. We consider an incompressible 1D
system, initially occupied by phase one, where phase two particles are entering the domain at the left bound-
ary. The condition at the left boundary is specified as constant total flux F ¼ 1, so that the velocity of each
particle entering through the left boundary is u� ¼ 1. We impose the rule that a particle representing phase
a 2 f1; 2g moves with the velocity
u� ¼ �L�
op
ox
ðx�; tÞ; ð30Þ
where op=ox is the macroscopic pressure gradient and L� a particle mobility. In other words, if L� is one, the
particle moves with the velocity u� ¼ �op=ox according to Darcy’s law for one-phase flow and L� ¼ 0 means
that the particle is immobile. The mean conditional particle velocity hu�ja� ¼ ai is equal to �hL�ja� ¼ aiop=ox,
where the property a� ¼ a indicates the phase represented by the particle. By multiplying the conditional par-
ticle velocities with the corresponding saturations Sa, which can be regarded as particle number densities, we
get the particle mass fluxes
F 1 ¼ �S1hL�ja� ¼ 1i op
ox

and F 2 ¼ �S2hL�ja� ¼ 2i op
ox
: ð31Þ
Due to continuity and the imposed inflow conditions at the left boundary one obtains the relation
F 1 þ F 2 ¼ 1: ð32Þ

By substituting for the pressure gradient in Eq. (30) using the relations (31), one gets the following expression
for the particle velocity:
u� ¼ L�

S1hL�ja� ¼ 1i þ S2hL�ja� ¼ 2i ð33Þ
and the particle mass fluxes can be expressed as
F 1 ¼
S1hL�ja� ¼ 1i

S1hL�ja� ¼ 1i þ S2hL�ja� ¼ 2i

and
F 2 ¼
S2hL�ja� ¼ 2i

S1hL�ja� ¼ 1i þ S2hL�ja� ¼ 2i : ð34Þ
If the specific rule
L� ¼
1; with the probability Saðx�; tÞ
0; else

�
ð35Þ
is employed, hL�ja� ¼ ai becomes equal Sa and as a result Eqs. (33) and (34) can be rewritten as
u� ¼ L�

S2
1 þ S2

2

; F 1 ¼
S2

1

S2
1 þ S2

2

and F 2 ¼
S2

2

S2
1 þ S2

2

; ð36Þ
which leads to the conservation law
oSa

ot
þ o

ox
S2

a

S2
1 þ S2

2

( )
¼ 0 ð37Þ
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for Sa. Note that Eq. (37) is identical with the standard two-phase Darcy formulation of incompressible flow
with quadratic relative permeabilities, constant viscosities, unit porosity and without capillary pressure or pore
scale dispersion. In this simple case of a system in equilibrium, the conditional expectation hL�ja� ¼ ai is equal
to Sa independent of the particle property PDF and one can also write
u� ¼ Sa

S2
1 þ S2

2

ð38Þ
for the phase a particle velocities directly in terms of the saturation values and obtains the same macroscopic
solutions.

Next, we introduce non-equilibrium effects by considering the Langevin model
dL� ¼ �xa L� � La

	 

dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

axa

q
dW ð39Þ
for the evolution of L� of a phase particles. The first term on the right-hand side describes the relaxation of L�

to some equilibrium value La at the rate xa. The last term is a stochastic diffusion term with the Wiener process
dW, which follows a Gaussian distribution with hdW i ¼ 0 and hdW 2i ¼ dt. Note that the diffusion coefficient
depends on the equilibrium variance r2

a and on the rate xa. The stochastic differential equation (39) is con-
structed such that for constant coefficients L� reaches a Gaussian equilibrium distribution with
hL�ja� ¼ ai ¼ La and hðL� � hL�ja� ¼ aiÞ2ja� ¼ ai ¼ r2

a.
Now we write the general form of the joint probability density function (JPDF) evolution equation, i.e.
of
ot
þ

ohdX
dt jâ; bL; x; tif

ox
þ

ohda
dt jâ; bL; x; tif

oâ
þ

ohdL
dt jâ; bL; x; tif

obL ¼ 0; ð40Þ
which can be derived from the conservation law for the joint probability density f of the stochastic variables a

and L. Note that â and bL are the corresponding sample space coordinates, respectively. In our specific model,
the JPDF is transported with the velocities
dX
dt
jâ; bL; x; t

� �
¼

bL
S1hLjâ ¼ 1i þ S2hLjâ ¼ 2i ; ð41Þ

da
dt
jâ; bL; x; t

� �
¼ 0 and ð42Þ

dL
dt
jâ; bL; x; t

� �
¼ �xâ

bL � Lâ

� �
� 1

f
oðr2

âxâf Þ
obL ð43Þ
in the x-;â- and bL-directions and therefore the modeled JPDF equation becomes
of
ot
þ o

ox

bLf
S1hLjâ ¼ 1i þ S2hLjâ ¼ 2i

( )
� o

obL xâðbL � LâÞf
n o

� o2ðr2
âxâf Þ

obL2
¼ 0: ð44Þ
This is a Fokker–Planck equation, where the first term describes the temporal change of the f, the second term
its transport in physical space, and the third and fourth terms describe drift and diffusion in the bL-space. Mul-
tiplying the JPDF Eq. (44) with ð2� âÞ and subsequent integration over the â–bL-space leads to the saturation
transport equation
oSa

ot
þ o

ox
SahLjâ ¼ ai

S1hLjâ ¼ 1i þ S2hLjâ ¼ 2i

� 
¼ 0; ð45Þ
which is identical with (37) for hLjâ ¼ ai ¼ Sa showing consistency with the equilibrium model. Similarly we
can derive a transport equation for SahLjâ ¼ ai by multiplying Eq. (44) with bLð2� âÞ. Integration over the
whole sample space then leads to
oSahLjâ ¼ ai
ot

þ o

ox
SahLjâ ¼ ai2

S1hLjâ ¼ 1i þ S2hLjâ ¼ 2i

( )
þ o

ox
SahðL� hLjâ ¼ aiÞ2jâ ¼ ai
S1hLjâ ¼ 1i þ S2hLjâ ¼ 2i

( )
þ xaðhLjâ ¼ ai � LaÞ ¼ 0: ð46Þ
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Note that the moment Eqs. (45) and (46) do not form a closed system, since in general the third term on the
left-hand side of Eq. (46) is unknown. On the other hand, this closure problem is avoided by directly solving
the JPDF Eqs. (44), e.g. with the SPM.

The example above simply demonstrates how the SPM can be employed to use statistical moments and cor-
relation structures of phase particle velocities (i.e. La, r2

a and xa) to predict consistent statistical macroscopic
behavior. The full advantage of such a stochastic approach becomes apparent, for example, if non-equilibrium
physics involving non-trivial PDFs is considered.

6.1. Numerical results

Here we present a few simulation results, based on the non-equilibrium model explained above. As already
mentioned in the previous subsection, the aim is to demonstrate how such simple Lagrangian rules lead to the
results distinctly different from the corresponding equilibrium Darcy solutions. Note that it is not intended to
propose a new physical model, however. For the studies we consider the same one-dimensional test case as in
Section 5.1. Initially, the computational domain is populated with phase 1 particles, which are in equilibrium,
i.e. a� ¼ 1 and L� ¼ S1 ¼ 1. From the left boundary, phase 2 particles with a� ¼ 2 and L� ¼ S2 ¼ 1 enter the
domain. The relaxation time (dimensionless) s0a ¼ 1=x0a ¼ s0 is the same for all particles and ra is set to zero
everywhere. Note that this model leads to L� ¼ S1 and L� ¼ S2 for phase 1 and phase 2 particles, respectively, if
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Fig. 12. Saturation evolution for different values of s0: (a) t0 ¼ 0:5; (b) t0 ¼ 1:5.
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s0 ! 0. Otherwise, the distribution of L� will be distinctly different; as the saturation profiles. For all simula-
tions the viscosity ratio M ¼ 1, the grid spacing Dx0 ¼ 0:01, dt0 ¼ 0:005 and the average number of particles
per cell was 50,000. Fig. 12 (a) and (b) depict the injected phase saturation profiles at two different times
for s0 ¼ 0, s0 ¼ 0:1 and s0 ¼ 1. A significant departure from equilibrium can be observed. Figs. 13 (a) and
(b) depict the effective relative permeability, kreff ¼ S2hLjâ ¼ 2i, curves as function of injected phase saturation
at four different times. One can observe that at late times the relative permeability curves approach a self-sim-
ilar profile, which is different from the equilibrium curve and depends on s0.

7. Discussion

The numerical examples and comparisons of Section 5 demonstrate that the SPM with appropriate rules for
the phase particle movement is consistent with standard two-phase Darcy flow. In Section 6, it is shown how
non-equilibrium effects can be modelled in the SPM framework. It has to be emphasized, however, that these
studies only serve as a proof of concept for the SPM and demonstrate the power of SPM in modeling complex
non-equilibrium phenomena. Below, the implications for physical modeling, but also the numerical difficulties
and challenges are further discussed.

7.1. Implications for physical modeling

The motivation for the development of such a SPM is a computational framework, in which the histories of
individual (infinitesimal) fluid volumes can be modeled depending on their phase, composition and other prop-
erties. It is important to distinguish between the SPM and deterministic particle methods such as characteristic
methods or smooth particle hydrodynamics, where the particles carry saturation values. A particle in the SPM
represents a fluid phase and moves with the phase particle velocity as opposed to the characteristic based
method, where a particle moves with the characteristic velocity. As in the physical world, saturation is repre-
sented as a local, spatial average of phase volume ratios, i.e. saturation is a statistical quantity and not a particle
property. Algorithmically, the saturation is estimated with local support (e.g. for the studies presented in this
paper as cell averages). We expect that various complex physical processes can be described more directly and
naturally than in a pure Eulerian framework, in which not individual fluid particle histories, but the evolution
of mean values (e.g. saturations) at fix locations is modeled. For example, as shown in Section 6, evolution of a
fluid particle, which depends on its history (and has memory) leads to non-equilibrium effects. These play a cru-
cial role for trapping, dissolution and reaction processes and the SPM offers an alternative approach to model
them. Moreover, although the SPM is not a pore scale model, it can provide a consistent link between the phys-
ics in the pores and the dynamics observed at Darcy scale. Therefore, however, the Lagrangian statistics of fluid
particles has to be provided, e.g. from pore scale modeling. Note also that the particle ensemble represents the
joint probability density function (PDF) of the particle properties (and not only first and maybe second
moments) as a function of space and time. Similar PDF methods have been applied with considerable success
to model turbulent reactive flows [26]. There, they have the significant advantages that turbulent convection
and chemical reactions appear in closed form. Moreover, the huge amount of statistical information contained
in the joint PDFs allows to develop more sophisticated models. On the other hand it has to be emphasized that a
SPM simulation requires significantly more computer resources than a FVM study of the same test case. There-
fore, we do not intend to use the SPM for very large studies, but rather to investigate how the macroscopic
(Darcy scale) behavior relates to the physics and dynamics at the pore scale. We hope that such insight will ulti-
mately lead to improved models for FVM simulators.

7.2. Numerical difficulties and challenges

As mentioned above, the SPM is computationally much more expensive than e.g. a FVM. This is due to the
large number of particles, which is required to keep the statistical and the deterministic bias errors small. For
example, the simulations discussed in this paper employed 10,000–50,000 particles per grid cell. Unfortunately,
the statistical error estat converges very slowly, i.e. estat 	 1=

ffiffiffi
n
p

, where n is the number of particles. Fig. 14
depicts the effect of n on the saturation profile. It is clear from the figure that even with few particles the expec-
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tation of the solution is essentially the same, with a large statistical error, however. To reduce the statistical
error without using too much memory, one can sample the results at several independent simulations (using
different random number generator seeds) and then average the individual results in a postprocessing step. Note
that the individual simulations can be done in parallel on standalone machines, i.e. no parallel computer is
required. However, this approach does not help to reduce the deterministic bias error ebias [30]. In order to con-
trol ebias, it is important to pay attention that the number of particles per cell is sufficiently high. Another issue,
which is related to the required particle number, is the estimation of statistical moments from the particle field.
For example, to resolve sharp fronts, a high spatial resolution is required. If the box method (sampling over grid
cells) is employed, this implies that a finer grid and therefore in total more particles are required. The box
method is only of first order spatial accuracy and it is similar to the first order finite volume method. It is worth-
while to investigate more sophisticated techniques to estimate saturation locally at particle locations. Possible
alternatives might be based on spectral or wavelet methods [31]. In any case, however, one has to ensure that the
dispersion in SPM simulations is dominated by the physical model and not by numerical errors.

8. Conclusions

In this paper, a stochastic particle method (SPM) to model nonlinear transport in porous media flow is pre-
sented. The motivation is the development of a modeling framework, in which the evolution of individual
(infinitesimal) fluid volumes (particles) can be modeled directly depending on their phase, composition, and
other properties. We believe that for various complex physical processes such a Lagrangian modeling
approach is very natural and certainly provides an alternative viewpoint. The goal of the present work was
to develop the basic SPM solution algorithm and to demonstrate that it is consistent with standard two phase
Darcy flow, if appropriate rules for the particle evolution are employed. Therefore, various one- and two-
dimensional validation studies were performed, which show that the SPM results converge to the expected
solutions. The numerical algorithm requires a minimum amount of dispersion, i.e. pure shocks cannot be com-
puted accurately. The amount of dispersion needed depends on the scheme used to estimate statistical
moments, which may be improved in the future. Furthermore, with a simple illustrative example it is shown
how the SPM can be used to model non-equilibrium transport effects. As a next step, it is planned to demon-
strate that the SPM provides an alternative and attractive approach to model some of the complex phenom-
ena, which are relevant for CO2 storage and which have their origin at the pore scales.
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Appendix

Here we provide the generalized fractional flow formulation for n-phases with capillary pressure differences.
The phase fluxes according to Darcy’s law reads
F i ¼ �
krik
li

$pi; i 2 f1; . . . ; ng; ð47Þ
Suppose we know n� 1 independent relations between the pairs of pressures
pi�1 � pi ¼ pci�1; i 2 f2; . . . ; ng; ð48Þ

which are n� 1 linear equations for n unknowns. Fixing the pressure of phase 1, p1, and solving for the pres-
sures of the rest of the phases yields
pi ¼ p1 �
Xi�1

j¼1

pcj; i 2 f2; . . . ; ng: ð49Þ
Substituting Eq. (49) for pi in Eq. (47) leads to
F i ¼ �
krik
li

$ p1 �
Xi�1

j¼1

pcj

 !
¼ � krik

li
$p1 þ

krik
li

Xi�1

j¼1

$pcj; i 2 f1; . . . ; ng; ð50Þ
The total flux is obtained by summing up all the individual phase fluxes
F ¼
Xn

l¼1

F l ¼ �k
Xn

l¼1

krl

ll
$pl ¼ �k

Xn

l¼1

krl

ll
$p1 þ k

Xn

l¼1

krl

ll

Xl�1

j¼1

$pcj

 !
ð51Þ
from which follows that
�$p1 ¼
F � k

Pn
l¼1

krl
ll

Pi�1
j¼1$pcj

� �
k
Pn

l¼1
krl
ll

: ð52Þ
Substituting Eq. (52) for �$p1 in Eq. (50) results in the fractional flow formulation of Darcy’s law, i.e.
F i ¼
kri

li

F � k
Pn

l¼1
krl
ll

Pl�1
j¼1$pcj

� �� �
Pn

l¼1
krl
ll

þ krik
li

Xi�1

j¼1
$pcj; i 2 f1; . . . ; ng ð53Þ
or
F i ¼
kri=liPn
l¼1krl=ll

F þ
�ðkrik=liÞ

Pn
l¼1ððkrl=llÞ

Pl�1
j¼1$pcjÞ þ ðkrik=liÞ

Pn
l¼1ðkrl=llÞ

Pi�1
j¼1$pcjPn

l¼1krl=ll
;

i 2 f1; . . . ; ng: ð54Þ
The Poisson equation can be derived from the conservation law
$ � F ¼ q ð55Þ

by substituting for F from Eq. (51) leads to
�$ � k
Xn

l¼1

krl

ll
$p1

 !
þ $ � k

Xn

l¼1

krl

ll

Xl�1

j¼1

$pcj

 ! !
¼ q: ð56Þ
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